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ABSTRACT. The Army Mobility model (AMM) developed, at the
U.S. Army Engineer Waterways Experiment Station, uses the data from
about a hundred factors that describe a vehicle terrain unit, road
unit, or linear feature to predict vehicular speeds. Recently,
Monte Carlo simulations were conducted for several wheeled and
tracked vehicles and different areas, varying some selected groups
of these factors plus and minus 10 percent about their nominal
values. The results of these simulations have been studied to
develop empirical relationships that allow the expression of
confidence measures for the speed predictions on an entire mobility
map. As a first step, programs have been written to test methods to
estimate the value of continuous statistical parameters (the mode
and its standard deviation) of a discrete histogram. This allows
theorems of mathematical statistics to be applied to the confidence
levels around the values of the parameters. The method uses a
variation I made on E. Parzen’s formula for the location of the
mode of the continuous distribution associated with a discrete
histogram.! The formula works by estimating the rate of an
associated statistical process by discrete windows (Jth waiting
times). The incomplete gamma function and a maximum liklihood
product is then used to estimate the parameters. ? This approach
has been tested for a range of Monte Carlo generated discrete
approximations to gamma distributions. It was then applied to the
histograms of possible errors in speed predictions of tactical
vehicles moving across areas on different mapsheets. These
histograms were generated previously in the course of the work by
Lessem and Ahlvin and are discussed in reference (6].

lSee Parzen, Emanuel, "Stochastic Proceses", Holden Day, 1962,
and Press,W., Flannery, B. et al., "Numerical Recipes in C," 2nd
ed., Cambridge U. Press, 1988.

2 Tbid.
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In trying to determine how to organize the sensitivity trials
in this particular set of programs and data there are several
approachs that can be taken. Because the speed prediction program
uses a series of lookup tables and flow chart, "yes" or "no", go
and no-go cutoff rules, points at which the program computes a no-
go output are natural areas to investigate its sensitivity to
errors in the data. Error measures can be associated with "critical
regions" in the data around these points. Determining the modes and
moments in the discrete non-parameteric histograms generated by the
sensitivity trials gives a way of characterlzlng and reproduc1ng
the confidence in information contained in the program’s output
involving these regions. One approach, which measures the program’s
"inherent sensivity" to errors, is terrain-independent and vehicle
dependent. It examines the code in the program to find the 1-factor
critical regions in the outputs of the Monte Carlo trials. It then
adjusts the values of the other factors in a detrimental direction
of the lookup table values until the 2,3 and higher multi-factor
critical regions are identified. Another approach is "project
specific" and is both terrain dependent and vehicle dependent. It
looks at the areas on the speed prediction maps where no-gos occur.
It then goes back to the input files to determine the values of the
data at the terrain units where these no-gos occur. This is the
approach that will be taken in this paper.

After the procedure for conducting the trials is determined it
1s important to consider ways to examine confidence levels for the
parameters that are estimated. One approach to this, which recently
has gained popularity, is the technique of bootstrapping. This
technique conducts Monte Carlo trials of the Monte Carlo trials.
The algorithm resamples not from the original data, but from a
smoothed kernel estimate of the data (see MathCad [8] for the
details of the algorithm and Efron, Hall and Tittleman, and Scott
for the theory behind formulas for the variance of the sampled
estimate of the parameter). Smoothed kernel formulas, introduced by
Parzen and others (see Scott [12], Parzen [9]) allow better
resolution of modes and other information in the data using a given
histogram bin size or window. In order to estimate the second
moment or the variance of the kernel estimate, it is necessary to
write programs to compute the second derivative of the frequency
polygon of the histogram (see Scott [12]). Bootstrapping confidence
intervals can then also be computed from this information.

In this paper a somewhat simplified approach is taken. A
leave-one-out maximum liklihood product of smoothed kernels over
different possible bin widths is taken. The product is taken over
a choice of possible bin widths. Once the best bin width is
determined the wvariance of the kernel associated with this bin
width is computed (see Numerical Recipes in C, 2nd ed. [10]) This
aggregrates the data in a one dimensional histogram and does not
give you as much information as in the more complicated multi-
dimensional approach.

Figures 1, 2, 3, and 4 show the results of a series of Monte
Carlo error sensitivity trials run on some vehicle speed
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predictions by Lessem et al. [6]. They display the speeds predicted
for the M998 High Mobility Multi-Purpose Vehicle (HMMV), the M977
10-Ton Heavy Expanded Mobility Tactical Truck (HEMTT), M113
Armoured Personnel Carrier, and the M-1 tank. The terrain areas
tested are in Yakima, Washington, Granjean Wells, New Mexico and
Bachelor, Australia. The graphs have predicted speeds plotted on
the horizontal axis. The speeds were computed by varying nine
factors: soil strength, slope, surface roughness, visibility,
vegetation type, and four other attributes dealing with obstacle
characteristics around their nominal values in a certain terrain
unit. The nominal values for that terrain unit were chosen as the
points around which the vehicle’s performance on the mapsheet
terrain units changed most noticeably. The points were determined
by referring both to the output that the program computed and to
the tables in the speed computation program where the performance
changed significantly. On the vertical axis is a count of the
number of occurances of a given speed for that vehicle, that
terrain unit, and for the range of Monte Carlo trials used. Both
uniform and normal density functions were used to compute the
randum numbers used in the Monte Carlo sensitivity trials. Thus
the graph displays the areal sensitivity of the speed predictions
for that vehicle in that area. Notice that the results don’t appear
to have a common probability density function. The WES technical
reports by Lessem et. al. [6] and (7] contain a more detailed
discussion of the features of the mobility programs which cause the
histograms to assume these shapes.

In general, these histograms will separate into several parts
each with distinct characteristics. In this particular case parts
of the graphs associated to each single mode were separated out.
Let us assume this has already been done. We arrange the results of
the Monte Carlo simulations in a histogram of N bins with the
number of Monte Carlo hits (test items) in the ith bin egual to
hist,. In order to estimate the number of Monte Carlo trials
necessary to reproduce the probability density function from which
these results give samples we have to use an unstructured or
nonparametric approach.? Let us define

t+J

Y hist;
= d=t
(1.1) p(t+1/2*J)——-—N*J

where t = bin number around which estimate is centered
J = integer = 1 .
N = total number of observations

} Keinosuke Fukunaga, "Introduction to Statistical Pattern
recognition," Academic Press, 2nd ed., 1991.



According to the reference by Fukunaga [3], this formula gives
the Parzen density estimate for the value of this probability
density function at the point k = t+ J/2.% In this formula we are
using a local region defined by a window of size J around the point
to estimate the number of hits in a counting process in terms of
the histogram values located in this region. This formula gives
estimates for the values of the density function at N-J points.
Sorting these estimates and picking out the middle and highest
values then gives the best prediction of the mode and the mean of
the histogram using windows of size J. On page 261 of this
reference the value of the standard deviation of this estimate is
calculated to be:

t+J
histi
{2+8) BN BT e
J*JT*N

Note that the value of this standard deviation refers to an
interval around a point on the x=-axis of the histogram and not
around the height of the histogram or number of Monte Carlo values
in that bin.

These formulas and theorems allow a leave-one-out procedure
along with a maximum 1liklihood product to be used to estimate
thevalue of the window size which gives the smallest error in
estimating the parameters.’

Using our procedure for computing estimates of the value of
the probability distribution, at the point k defined in equation
1.1 the function p(k) 1is proportional to the amount the
cumultative distribution function changes in this interval... so,
the larger it is, the better is the chance for a local maximum of
the probability distribution function at that point. The program
computes estimates of the continuous modes for different window
sizes, where J = window size, X, = bin# of largest of these
estimates, p(k) = weighted estimate of mode at this bin = (sum of
# of distribution hits in the bins inside a window of width J
centered at k)/(total # shots)* J. In the case where the

Y Actually, this is the density function of a "renewal counting
process'" as defined in Parzen [9].

5 See besides the Numerical Recipes in C reference also the
Introduction to Statistical Pattern Recognition text referred to
above. These same procedures can be used to characterize the
histogram distribution of pixel intensities in digital images. Such
a characterization allows the use of various neural network
learning procedures to be used to identify the images.
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distribution function is suspected to be bimodal, this procedure
will identify at least the top two modes when it is iterated over

different window sizes.

Let 8§ (J) =the range of data values around the candidate for mode

calculated using a window size of J.

Emi ekl

2
Thus, 8{(J) = E: bigty
J

1=x, ~ _2.

Then, in this notation, the probability distribution p,(k) of
the smoothed estimate of the original data is given by:®

_ 8 ()
Dy (k) s

Let

i=k=

(2.1) 6,(k)= )  hist;
i=k-

N|t..

ol ey

Let H(J)= the hypothesis that the true mode x,has been
identified by considering a window of size J. We want to consider
how likely it is that the range around x,should be shorter than it
is observed to be. Let P(a,x) be the incomplete gamma function:

x

fe'ttﬂ'ldt

o HE
Pla,x) P(a)o

where:

6 See the discussion in Numerical Recipes in C edition 1 and
also the book by Parzen, pages 133-134.
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T'(a)=|e-tteide
I

Thus, P(a,x) 1is the cumulative Poisson probability distribution
function, Prob(X <= a) for the Poisson probability distribution X.
It is defined as the probability that the number of Poisson random
events occuring will be between 0 and a - 1. Each of these random
events will have a probability of occurance of N*p,.

The probability that the range around x, is actually shorter than
observed to be if H(n) is true instead of H(J) is’:

e (¥ py(n) £)n-
f (NpJ(n)) Dy e-Np;{nl tdt
) (= 1)
If we let:
y = Np,;(n) t
a=n
x = 6,(J9)
in the above equation ,
then it is equal to:
0,(J
Pt 3
N p,(n)
which is the same as:
d,(J)
Blp, 8 vl
(n, 6J(n))

Taking the product of all these factors for each mode x,then gives
the likelihood that the range around x, should be shorter than the
range observed around x; for all n other than J.

Thus the likelihood function is defined by Likelihood (H(J)):

7 parzen, Ibid pp. 133-134.
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(2.2)  L(n|J) =I,.,P(n, J«8,(J) /8,(n))

The program then computes the value of this window size J that
maximizes the 1likelihood function, given a set of arrayed a
posteriori error sizes.

More precisely, the steps in the computation are:

1) Compute the
6 ,(n)

according to equation (2.1) for the points corresponding to each
bin.

2) Compute the maximum liklihood products according to equation
(2.2) in order to determine the optimal window size.

3) Compute the weighted sums p(k) according to equatien (1.1)
and the standard deviations according to equation (1.2) for the
points corresponding to to each bin.

Because of the nonparametric form of the Parzen density
estimate, the procedures will work for any empirically determined
histogram. A discrete sorting procedure normally gives a pretty
good estimate of the value of the mean and mode (even assuming the
actual distribution 1is continuous). However, in order to
approximate the size of the standard deviation in the estimation of
the parameters, it is necessary to use the maximum likelihood
estimators. These estimators of the best window sizes will result
in good approximations of the parameters.
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An example of how these parameter estimates work is shown as
it is applied to the results of Monte Carlo sensitivity runs in
Figures 1,2,3,4. The simulations shown in the figures were
conducted for four vehicles the HMMV, the M997 trailer transporter,
the M113 APC, and the M-1 tank. The top charts show the results for
a mapsheet Yakima Proving Grounds and the bottom charts those for
a mapsheet including Batchelor Australia.These figures show the
results of varying the parameter values plus and minus 10 per cent
around their nominal values. Nominal values are defined as the
vehicle parameters plus the specific parameter values in each
terrain unit. For, this analysis, we considered the particular
values for which that vehicle experiences a go, no-go situation,as
the values around which variations were made.

Data from the M997, M113, and M998 runs were extracted
directly from the top row of histograms in Figures 1,2, and 3
respectively. Programs were written to expand the information into
a 20 bin histogram and to scale the data. This turned out to be a
good range for the incomplete gamma function to discriminate the
maximum likelihood estimates. The results of the program runs are.
shown below. First the program calculates a value for the mode by
simply sorting the columns of the histogram. This is called a
discrete estimate. The abscissa of this point is called modei. Then
the program computes the optimal window size for smoothing the data
using the leave-one-out maximum likelihood procedure explained
above and determines a continuous estimate for the mode along with
a standard deviation. Both of these numbers are computed using this
optimal window size.

The results are shown below:

histogram of Monte Carlo error runs
M998 Yakima-15 9-factor-terrain ( mode#l )

X p(X) graph:
4.0000 0.1820 *kkkkkkkk
4.5500 0.3275 *kkkkkkhkhkkkkihkkk
.1000 0.4731 kkkkkkkkkkhkhkhkkhkhkkkxxk
.6500 0.6186 hhkkhkhkkkkkkhhkhkkkkhkhhhhhhhkrkhkk
.2000 0.3311 hkkkkkhkkkkkkkkk

.7500 0.0437 *%*
.2500 0.0218 *
7.7500 0.0000
8.3000 0.0000

SN ooy

Data drawn from a histogram of Monte Carlo sensitivity
to errors in terrain factors
Discrete estimate of mode of data set is 42.500000

Discrete estimated value of modei= 5.650001
Probability of mode detected at window size 3 is 0.229365

Probability of mode detected at window size 4 is 0.253296
Probability of mode detected at window size 5 is 0.256476
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Probability of mode detected at window size 6 is 0.014268
Probability of mode detected at window size 7 1s 0.014372

Most likely window size is 5 value of mode is 32.50000
Continuously estimated value of modei=5.10000

Standard deviation of the continuous estimate (for this window
size) is 0.607092

histogram of Monte Carlo error runs
M998 Yakima-15 9-factor-terrain ( mode#2 )
b p(x) graph:

16.8000 0.0000
17.3500 0.0000
17.9000 0.0000

18.4500 0.0000
19.0000 0.7143 hhkkkhkhkrhkkhhkkhhkhkhhrhhhhkkhkkkkk

19.5500 1.4286 *kkkkkkhkkkkkhkhkkkkkhkkkdkhhkhkhhkhhhhrkrkhhrhxrrd*
20.0500 0.9740 *kkkkkkhkdkkhkhhkhkkkkrhkkhhhhhkkkkdkhhhkhkkhkkhhhhh*

20.5500 0.5195 khkhkhkkkhkkhhdkhkkhhhkhkkhkkhxhkkk
21.. 1000 0.4545 khkAkhkkhkhhkkhkhhhkrhkk ki hkkk

21 6500 0.3896 hhkkkkhkhkhkrrhhkhkhkhkkkxk
22.2000 0.3831 khkkkkhkrEhk kA Ak khkh XXX KX
22.7500 0.3766 khkhkhkkhkkhkhkhkhhkhkkhkkxx
23.2500 0.3766 kkdkkkhkhkhkhkkkhkkhrhkk

23.7500 0.3766 kkkhkkhkkhkhkhkkhkxhhkhkhkx

24.3000 0.2597 Hkkkkkkkkkdkk
24.8500 0.1429  *kkkkx*k
0.0000 0.0000

Data drawn from a histogram of Monte Carlo sensitivity
to errors in terrain factors
Discrete estimate of mode of data set is 11.0000000

Discrete estimated value of modei=19.549995

is 0.204653
is 0.039479
is 0.116221

Probability of mode detected at window size
Probability of mode detected at window size
Probability of mode detected at window size
Probability of mode detected at window size is 0.065450
Probability of mode detected at window size is 0.129556

Most likely window size is 3 value of mode is 11.0000000

Standard deviation of the continuous estimate (for this window
size) is 0.269430 :

SN o e W

Continuously estimated value of modei=11.00000

histogram of Monte Carlo error runs
M997 Yakima-15 9-factor-terrain ( mode#1l )

X p(x) graph:
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2.8000 -0.0387

2::35010 0.2062 Hkkkkkhkkk%k

3 LOGO 0.4510 Hhkkkkhkkkrkdkrkrxrhhhhk

32500 0.6959 dhkkkkhrdkhkkkhkkdkh kA khrkkhk kA kAT h*
3.3833 0.59056 *kkkkkrhrhkkhkkkhhhhhhhhkkhkrd®
3.5167 0.4954 hkkhkkkhkrhkhkdhkhkhhrrhhkrk

3.6500 0.3952 khkhkhkhkkkhkhkrkhkhkhkkkkkhk

3.8000 0.2234 hhkkkhkhkhkkkk
3429500 0.0515 %%

4.0833 0.0344 =

4.2167 0.0172

4.3500 0.0000

Data drawn from a histogram of Monte Carlo sensitivity
to errors in terrain factors

Discrete estimate of mode of data set is 40.500000
Discrete estimated value of modei= 3.250000

s 0.2B2627
is 0.064773
is 0.076770

Probability of mode detected at window size
Probability of mode detected at window size
Probability of mode detected at window size
Probability of mode detected at window size is 0.083600
Probability of mode detected at window size is 0.084213

Most likely window size is 3 value of mode is 40.500000

Standard deviation of the continuous estimate (for this window
SiZe) is 1253331

S oo W

Continuously estimated value of modei=3.250000

histogram of Monte Carlo error runs
M977 Yakima-15 9-factor-terrain ( mode#2 )

X p(x) graph:
6.9000 -0.0032
7.0500 0.0000
7.2000 0.0032
7.3500 0.0065
7.4833 0.1775 FFxxkkkkk

F6167 0.3485 *kkkkhkhkhkhhhhkhkkkkk
71500 0.5195 *kkkkhkhkhkkdhhhkhkhkkhkhkhkkxhtkxk

7.9000 D0.6494 HhhkkhkkARk*RAIAKRA KKK KA IR AR KA AKRARK KK
8.0500 0.7792 *khkkhkhhhkhkhkhhhhkkhhkhhkhhrhhhhhhrhdhhhixk
8.2000 0.7143 Ahkhkkhkhkhkkkkhhkkkkhkhkkhhkkhhkhkhhkrhkhhhhkkhx
8.3500 0.6494 hhkhkdkkhkhhhkhhhkhdkhkhkhkhkkhhhhkhhhhkhhk
8.4833 0.6061 %% %% % % %k ¥ % % % v % % % % % % % % %k % &k %k Kk k% kok

8.6167 0.5628 I T

8.7500 0.5195 +Hkkdkkhkhkhkdhdhkkhhkhkhkkkhkkhkhkkk

8.9000 0.4545 AEk kA A A KRR AR KA A AR A KKK %k

9.0500 0.3896 kkkhkhkhkhkhkkhkhkkhkhkhkkhkk

9 1833 0.3030 *%kkkkkhkkkkkk*k

9.3167 0.2165 *hkkkkkkkkk
9.4500 0.1299 *%xkk%k*
0.0000 0.0000
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Data drawn from a histogram of Monte Carlo sensitivity
to errors in terrain factors

Discrete estimate of mode of data set is 6.000000
Discrete estimated value of modei= 8.049999

Probability of mode detected at window size
Probability of mode detected at window size
Probability of mode detected at window size
Probability of mode detected at window size is 0.183745
Probability of mode detected at window size is 0.298017

Most likely window size is 7 value of mode is 5.500000

Standard deviation of the continuous estimate (for this window
size) is 0.103940

is 0.007822
is 0.023633
is 0.082934

S oW

Continuously estimated value of modei=8.199999

histogram of Monte Carlo error runs
M113 Yakima-15 9-factor-terrain ( mode#1 )

b p(x) graph:
3.0000 -0.0862
3.2000 0.1149 **%%x*x=*
3.4000 0.316] H*kkhkkkdkdkkdkkkkk*
3.6000 0.5172 khkkhkhkhkkhkkhkhhhkdkdkhkhhkrxdkk
3.7500 0.6322 hkkhkkhkkhkhrhhhkhhkhhkkkhkhhkkhhrhdhxhkk
3.9000 0.747]1 *kkkdkkdkdkdkkdhhkkkhkhkkkkhkhkkkkhkhkkkkkkkkk
4.1000 0.7701 *kkhkkrkkrhdkhdkhhhdkhdhkhhhhhkhkhkhhhkhhkhkhdk
4.3000 0.793] Hhkkkkrkkdkkkkhkrkkkkkhkkhhkhkhhkkhdhdhdhkkkk
4.4500 0.7902 Gk khk Ak kAR A A KA I AR AR AR R AR A A AR A hhhkhhkhkkkhkk
4.6000 0.7874 Ak Ak kAR A A A RR AR KA AR R AR AR kA Ak hhkkrhkhhkhhhhhkx
4.8000 0.7644 hkkkhkkhkhkhhhhkkkhhhkhkhkhkhhadhkhhhhhhkhhxhhx
5.0000 0.7414 hhkkkhkhhkkkhkkhkhhhhkhhhrhhhhhhhhhhhhhkkkk
5.1500 0.6322 kkhkkhkhhkhkhkhkhkkxkhkhkhkhkhkrkkkkkkhkkhxk
5.3000 0.5230 hkdkkdkdkdhdkdkdhkhkkhhkkkkrkkkk
5.5000 0.3563 kkhkhkkhkkhkkhkkhkkhikk*k

5.7000 0.1897 *xkkkkkk*
5.8500 0.0977 ****
6.0000 0.0057

0.0000 0.0000

0.0000 0.0000

Data drawn from a histogram of Monte Carlo sensitivity
to errors in terrain factors

Discrete estimate of mode of data set is 13.799999

Discrete estimated value of modei= 4.300000
standard deviation is 0.283068

Probability of mode detected at window size 3 is 0.003206
Probability of mode detected at window size 4 is 0.020749
Probability of mode detected at window size 5 is 0.114160



Probability of mode detected at window size 6 is 0.132713
Probability of mode detected at window size 7 is 0.369124

Most likely window size is 7 value of mode is 13.799999

Standard deviation of the continuous estimate (for this window
size) is 0.283068

Continuously estimated value of modei=13.79999
Summary of Mode Estimates for data

Discrete estimate of mode of data set 1 is point 5.650001 at
42.500000

continuous estimate of mode of data set 1 is point 5.100000 with
value 32.500000

A window of size 5 was used to estimate this

Discrete estimate of mode of data set 2 is point 19.549995 at
11.000000

continuous estimate of mode of data set 2 is point 19.549995 with
value 11.000000

A window of size 3 was used to estimate this

Discrete estimate of mode of data set 3 is point 3.250000 at
40.500000

continuous estimate of mode of data set 3 is point 3.250000 with
value 40.500000

A window of size 3 was used to estimate this

Discrete estimate of mode of data set 4 is point 8.049999 at
6.000000

continuous estimate of mode of data set 4 is point 8.199999 with
value 5.500000

A window of size 7 was used to estimate this

Discrete estimate of mode of data set 5 is point 4.300000 at
13.799999

continuous estimate of mode of data set 5 is point 4.300000 with
value 13.799999 :

A window of size 7 was used to estimate this

In summary, using this technique of estimation for finding
modes there is in one case (data set 1) about a 10 percent increase
in the accuracy of the determination of its location. This makes
available a more accurate fix on the NOGO program vehicle speed
values around which to do the sensitivity analyses. Also,
determination of the optimal window size to use in the estimate,
gives a means to non-parametrically estimate the standard deviation
of the sensitivity analyses results. This then tells us how many
Monte Carlo trials should be used to explore the program’s
senstivity to variations in the values in its internal tables and
input data. For example, for the two runs concerning the M977
performance, one mode has a determination with a standard deviation
of 1.253 and the other with a standard deviation of .1039. After
determining this, you could then go back and run 10 times more
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Monte Carlo trials around the first mode. Similarly, although it
was not analyzed for this paper, the determination of a mode in
the case of the M-1 tank is much less well defined. Looking at the
Monte Carlo sensitivity histogram in the top part of Figure 4, it
is clear that in this case the predictions will be less accurate.
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